
Dynamics of a freely evolving, two-dimensional granular medium

Sean McNamara*

Groupe Matière Condense´e et Matériaux (URA CNRS No. 804), Universite´ de Rennes I, Campus de Beaulieu,
35042 Rennes Cedex, France

W. R. Young†

Scripps Institution of Oceanography, La Jolla, California 92093-0230
~Received 15 September 1995!

We consider the dynamics of an ensemble of identical, inelastic, hard disks in a doubly periodic domain.
Because there is no external forcing the total energy of the system is monotonically decreasing so that this
idealized granular medium is ‘‘cooling down.’’ There are three nondimensional control parameters: the coef-
ficient of restitutionr , the solid fractionn, and the total number of disks in the domainN. Our goal is a
comprehensive description of the phenomenology of granular cooling in the (r ,n,N) parameter space. Previous
studies have shown that granular cooling results in the formation of structures: both the mass and the momen-
tum spontaneously become nonuniform. Four different regimes~kinetic, shearing, clustered, and collapsed!
have been identified. Starting with the almost elastic case, in whichr is just less than 1, the kinetic regime
resembles a classical nondissipative gas in which there are no structures. Whenr is decreased~with fixed N
andn! the system evolves into the shearing regime in which most of the energy and momentum resides in the
gravest hydrodynamic shear mode. At still smaller values ofr the clustered regime appears as an extended
transient. Large clusters of disks form, collide, breakup, and reform. From the clustered state the gas eventually
either evolves into the shearing regime or, alternatively, collapses. The collapsed regime is characterized by a
dynamical singularity in which a group of particles collides infinitely often in a finite time. While each
individual collision is binary, the space and time scales decrease geometrically with the cumulative number of
collisions so that a multiparticle interaction occurs. The regime boundaries~i.e., the critical values ofr ! in the
(N,n) plane have been delineated using event-driven numerical simulations. Analytic considerations show that
the results of the simulations can be condensed by supposing that the critical values ofr depend only onN and
n through the optical depth,l[dANpn/2 whered is the disk diameter.@S1063-651X~96!03505-2#

PACS number~s!: 47.50.1d, 05.20.Dd, 47.55.Kf, 62.90.1k

I. INTRODUCTION

A granular medium is often idealized as an ensemble of
particles in which the energy loss that accompanies the col-
lision of macroscopic bodies is modeled with a coefficient of
restitution. In this paper we are concerned with the simplest
case in which the particles are identical, circular hard disks
moving ballistically in a two-dimensional, doubly periodic
domain. Our goal is the identification and quantification of
the different regimes which occur when this idealized two-
dimensional granular medium ‘‘cools.’’ By this we mean
that the disks start att50 in a thermalized state and then the
gas freely evolves without the addition of energy. There are
no interparticle forces between collisions and if these colli-
sions conserve energy then this is the classical hard core gas.
But if the coefficient of restitution is less than one then the
collisions dissipate energy and so the granular temperature
will decrease. If the particles simply slowed down as a result
of this dissipation then granular cooling would be boring.
But several earlier works have shown that inelastic dynamics

also results in the formation of large scale inhomogeneities
of both mass and momentum. In other words, granular cool-
ing is accompanied by structure formation and these effects
are often so dramatic that it is not an exaggeration to de-
scribe them as ‘‘phase changes.’’

The granular cooling problem was formulated by Haff@1#
and he showed that granular kinetic theory predicts that the
temperature decreases ast22. This law assumes that large
scale structures do not form in the medium so that collision
frequencies can be estimated using the average particle sepa-
ration. Thet22 prediction was tested by the one-dimensional
simulations of McNamara and Young@2,3# and Sela and
Goldhirsch@4# which showed that the cooling granular me-
dium is unstable to the formation of clusters, i.e., the homo-
geneous state assumed by Haff is unstable. Once the struc-
tures form there are large departures from thet22 law.

The two-dimensional cooling problem was investigated
by Goldhirsch and Zanetti@5# and Goldhirsch, Tan, and
Zanetti @6#. Using a combination of theory and numerical
simulation these investigators showed that clustering occurs
in a two-dimensional cooling medium. One interesting result,
which has no one-dimensional precursor, is that in some
cases the hydrodynamic shear modes are unstable so that a
large scale segregation of momentum spontaneously appears.

Another phenomenon which occurs in cooling granular
systems is inelastic collapse. Bernu and Mazighi@7#, and
later McNamara and Young@2# and Constantin, Grossman,
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and Mungan@8#, showed that inelastic particles in one di-
mension have a collective behavior which results in a multi-
particle collision. A group of inelastic particles can collide
infinitely often in a finite time so that the interparticle spac-
ing becomes zero and all of the kinetic energy in the center
of mass frame is dissipated. This sequence of binary colli-
sions, with geometrically decreasing space and time scales,
accumulates in a true multiparticle collision. Thus the binary
collision assumption, which is used in granular kinetic theo-
ries, fails. McNamara and Young@9# presented numerical
evidence that this finite time singularity also occurs in two
dimensions. One goal of this paper is to delineate the region
of the parameter space in which the inelastic collapse occurs
in a cooling, two-dimensional granular medium.

An important characteristic of the instabilities described
above is that they are confined to long wavelengths, or small
wave numbers. Consequently small systems will be stable
because the long, unstable waves will not fit in the domain. If
the particle density is fixed then this condition on the domain
size is equivalent to saying that the clustering instability re-
quires a certain minimum number of particles. As the coef-
ficient of restitutionr approaches one the band of unstable
wave numbers contracts towards the origin as shown sche-
matically in Fig. 1. Thus perfectly elastic systems are always
‘‘small’’ in the sense that asr→1 the unstable disturbances
become arbitrarily long so that structures cannot form in a
domain of fixed size.

The two-dimensional cooling problem in a doubly peri-
odic geometry is complicated because there are three impor-
tant nondimensional parameters. There is the coefficient of
restitutionr , the total number of disksN, and the solid frac-
tion n. If the square domain has a side of lengthL and the
disk diameter isd then

n5N
pd2

4L2
. ~1!

Throughout this paper we useN, n, and r as independent
parameters and determined/L from Eq.~1!. Our goal here is
a panoramic exploration of this three-dimensional parameter
space. Thus our strategy differs from the earlier study of
Goldhirsch, Tan, and Zanetti@6# which was based on simu-
lations of dilute ~n50.05! and large ~N520 000 or
N540 000! systems withr50.6 andr50.98.

II. DESCRIPTION OF THE EVENT-DRIVEN
SIMULATIONS

In this section we describe the model used in the simula-
tions, the initial conditions, the boundary conditions, and
how the smooth fields are estimated from the particle posi-
tions and velocities. We also explain the criterion used to
detect inelastic collapse.

A. The collision rule

During a collision, the relative velocity of the particles
perpendicular to the line connecting their centers is con-
served, but the velocity along this line is reduced by a factor
r . Thus the collision rule is

u185u12
1
2 ~11r !@ k̂•~u12u2!# k̂,

~2!
u285u21

1
2 ~11r !@ k̂•~u12u2!# k̂,

where primes indicate velocities after the collision, andk̂ is a
unit vector pointing along the line of centers, from particle 1
towards particle 2. Collisions are assumed to be instanta-
neous and involve only two particles. Between collisions
particles move at a constant velocity.

B. Initial and boundary conditions

The initial condition for all simulations is a uniform dis-
tribution of particles in physical space and a Maxwellian
distribution in velocity space. The initial condition is pre-
pared by placing particles into the space on a regular array
~to avoid interpenetrations! and assigning random velocities.
The simulation is run withr51, the value for an ideal gas,
for at least 100 collisions per particle. This thermalization
ensures that all trace of the initial array is erased and that the
velocities are distributed with a Maxwellian velocity distri-
bution. Then the resulting positions and velocities of the par-
ticles define the initial conditions for the inelastic simula-
tions. Independent initial conditions can be generated by
stopping the elastic simulation at different times.

We use a square domain with doubly periodic boundary
conditions. When a particle leaves the right~or bottom! side
of the domain, it reenters at the left~or top! with the same
velocity. This simple boundary condition removes the need
for specifying an interaction with walls.

C. The smoothing algorithm

The simulation gives the positions and velocities of each
particle. But hydrodynamic theories describe continuous
fields, usually the densityr, macroscopic velocityv, and
temperatureT. To make the transition between a list of par-
ticle positions and smooth continuous fields we consider the
mass of each particle to be spread out in a ‘‘halo.’’~The

FIG. 1. A schematic linear stability curve showing the growth
rates as a function of the wave numberk @i.e., linear disturbances
are proportional to exp(st1 ikx) where t is a ‘‘collision time’’
introduced in Refs.@3#, @5#, @6#, and@19# #. Disturbances with wave
numbers less thankc are unstable, i.e., long waves are unstable. If
the domain is sufficiently small then these long waves will be un-
able to satisfy the quantization condition and the homogeneous state
will be stable.
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terminology is from an unpublished paper by Eckart@10#.!
The halo is larger than a particle diameter, meaning that
halos of neighboring particles can overlap. To calculater, v,
or T at any point, the contributions from the nearby halos are
summed. To make this idea precise, define the halo function
h(R) with the following properties:

E
0

`

h~R!2pRdR51,

h~R!→0 as R→`, ~3!

h~R!>0.

The halo function describes how the mass is distributed in
the halo. The argument ofh specifies the distance between
the point in question and the center of the particle. The first
condition in Eq.~3! is a normalization condition. The second
property requires that the halo be localized around the parti-
cle’s position. The third property guarantees that the density
and temperature will be non-negative everywhere. We use a
Gaussian halo function

h~R!5
1

2ps2 exp~2R2/2s2!, ~4!

wheres.d is a length that controls the size of the halo. We
typically uses/d56. The density, macroscopic velocity and
temperature at any pointx can be calculated by

r~x!5m(
i51

N

h~ uxi2xu!, ~5a!

r~x!v~x!5m(
i51

N

uih~ uxi2xu!, ~5b!

r~x!T~x!5m(
i51

N

~ui
2/2!h~ uxi2xu!2r~x!v2~x!/2, ~5c!

whereN is the number of particles in the simulation,xi is the
location of thei th particle, andui is its velocity. The advan-
tage of this smoothing technique is that these expressions are
continuous in space and time and gradients can be calculated
by differentiating Eq.~5!.

D. The event driven strategy and the contact criterion
for collapse detection

The simulation advances from one collision to the next.
Particles participating in all impending collisions are identi-
fied, and the time of each collision is forecast. Then the
colliding pair with the shortest time to collision is located,
and the system is advanced to that time. The velocities of the
two particles after collision are calculated using Eq.~2!.
Then the list of future collisions is updated, and the cycle
begins again. This movement in time from one collision to
another is called ‘‘event driven’’@11,12#. In contrast, the
‘‘soft-particle’’ method requires small time steps. For a com-
parison between soft-particle, time stepped and the hard-
particle, event-driven algorithms for granular systems, we

refer the reader to the review by Haff@13# and also to the
recent work of Ludinget al. @14#.

In an ideal gas, instantaneous collisions will always be
binary, because a three body interaction requires that two
collisions be simultaneous. However, in a granular medium,
multiple particle collisions occur with a finite probability@9#.
These interactions are as close to simultaneous as machine
precision permits. Thus the ‘‘hard-particle’’ model, with its
binary collision rule in Eq.~2!, is not defined the first time a
multiple-particle collision occurs. Model regularization re-
quires additional rules which specify the outcome of a mul-
tiparticle collision, e.g., the largest relative velocity~LRV!
procedure described by Ludinget al. @15#. In this paper we
will not become involved in the regularization issue: instead
we use a ‘‘contact criterion’’ to detect three particle interac-
tions.

To explain the ‘‘contact criterion’’ for collapse detection
we begin by observing that after every binary collision, the
future collisions of the two colliding particles must be recal-
culated. If any one of these future collisions involve a third
particle separated by less than 10215 of a particle diameter,
then we stop the program. At this point the interparticle spac-
ing ~and hence the time to the next collision! cannot be cal-
culated without incurring a large round off error. Thus when
the program stops, there are two particles in contact, and a
third particle within 10215d of one of the colliding pair. To
within machine precision, a three-body interaction has oc-
curred.

Figure 2 shows the contact criterion in action. Two simu-
lations are superimposed. The first, indicated by circles,
stops when a three-body event is detected, while the second,
with the same initial conditions and indicated by crosses,
continues to evolve after the three-body event. Each time the
program calculates a particle separation, a point is placed on
the graph, whether it leads to a collision or not. For the first
100 times that the program calculates a particle separation, it
finds a separation greater than 1022d. Then, a three-body
interaction commences. The particle separation decreases
geometrically over 14 orders of magnitude, until it hits the
floor of machine precision at 10215d. At this point, the con-
tact criterion halts the first simulations, while the second
continues. This second simulation generates four separations,
all at the limit of machine precision~and two of which are
negative!, before the particles disperse. We believe that on a
machine with infinite precision, the geometrically decreasing
separations would continue forever. If the contact criterion is
ignored, this infinite series of collisions is replaced by four or
five inaccurately calculated collisions, after which the cluster
disperses. We do not know what effects, if any, this ‘‘nu-
merical regularization’’ has on other aspects of the simula-
tions. It is possible that the effect is negligible, because nei-
ther the infinite series of collisions, nor the four or five
collisions that take their place dissipate much energy.

Now, in the one-dimensional case, analytic results@2,7,8#
show that true multiparticle collisions occur. But an analo-
gous analytic framework has not yet been constructed for the
two-dimensional case. In this paper whenever a simulation is
stopped by the contact criterion we say that the simulation
‘‘stopped because of an inelastic collapse.’’ Evidence sup-
porting this interpretation is given in Ref.@9#: the nearly
three-body events are associated with a diverging collision
count and a line of particles. In the sequel additional evi-
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dence is provided: two-dimensional three-body events occur
only whenr is below a certain critical value that is related to
the analytically estimated threshold for a one-dimensional
collapse.

III. PHENOMENOLOGY OF THE COOLING
GRANULAR MEDIUM

In this section we present a set of simulations all with
N51024 particles and a solid fractionn50.25. At this pa-
rameter setting the most important qualitative distinction is
between simulations with small values ofr which collapse,
and those with larger values ofr which seem to run indefi-
nitely without encountering a multiparticle interaction. In
Sec. IV we estimate that the critical value ofr which sepa-
rates these two regimesr crit

coll~1024,0.25!, is around 0.62. We
will describe this transition in more detail below. For the
moment we will focus on moderately elastic simulations
with 0.56<r<1.

For noncollapsing simulations, such as those described by
Goldhirsch, Tan, and Zanetti@6#, the major qualitative dis-
tinction is between cases in which mass and momentum are
organized into large structures, and those in which mass and
momentum remain smoothly distributed throughout the do-
main. Once again, this qualitative distinction is controlled by
r . Very elastic simulations, i.e., at (N,n)5(1024,0.25) those
with 0.98<r<1, do not form organized structures.

Figures 3 and 4 show the results of 45 simulations with
0.56<r<1 andDr50.01. Each simulation ran until either
the number of collisions per particle, denotedC/N, reached
800, or until the simulation was halted by collapse~this hap-
pened to the six simulations in the range 0.56,r,0.61 and
also to the simulation withr50.64!. Two quantities,nrms and
EK/ET ~defined below!, were recorded everyDC/N51 col-
lisions. Then this record was divided into eight segments of
DC/N5100, and collision weighted~not time weighted! av-
erage values of these quantities were computed within each
segment. The first segment was dropped, because it contains
transients. We also discarded segments in which a collapse
occurred. The remaining segments make up the data of Figs.
3 and 4. Notice that there are no points forr<0.58: this is
because in these three simulations collapse occurred in the
first segment. On the other hand whenr>0.62 there are

FIG. 2. The contact criterion in action. Two simulations are
shown, one which respects the contact criterion~circles!, and one
which does not~crosses!. The two simulations have the same initial
conditions. Each time the program calculates a particle separation, a
point is placed on the graph, whether it leads to a collision or not.
After about 100 calls to the particle separation subroutine, inelastic
collapse commences. The particle separations decrease geometri-
cally, until hitting the floor of the machine precision. At this point,
the first simulation is stopped by the contact criterion, whereas the
second proceeds. We believe the following four separations, all at
the level of numerical precision, are computational artifacts. Two of
the separations~marked by stars! are negative. After these four
collisions, the particles disperse.

FIG. 3. Density in inhomogeneities measured bynrms, the root
mean square~rms! fluctuation of the solid fraction, for 45 simula-
tions with 0.55,r<1.0. Each simulation ran until eitherC/N
5800, or until inelastic collapse. The time series ofnrms was di-
vided into eight segments each of lengthDC/N5100. The first
segment of each time series was discarded, and the remaining seven
averaged to generate points for this plot. If inelastic collapse oc-
curred within a segment, that segment was also discarded.

FIG. 4. This figure shows the same 45 simulations as Fig. 3,
except that the momentum inhomogeneities, measured by the ratio
of macroscopic kinetic to thermal kinetic energyEK/ET, are shown.
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seven data points at almost every value ofr . The exception is
r50.64 which collapsed when the number of collisions per
particle wasC/N5774.

In Fig. 3, density organization is measured bynrms, the
root mean square~rms! variation of the local solid fraction
n~x!. The local solid fraction is evaluated on a grid of points,
using the method described in Sec. II C. Thennrms is calcu-
lated as the square root of the area average of@n~x!2n#2.

In Fig. 4 momentum organization is measured by the ratio
of macroscopic to thermal kinetic energy. The temperature
and the macroscopic velocity were calculated on a grid of
points, again using the smoothing algorithm of Sec. II C.
Then the quantityEK/ET is the ratio of the total macroscopic
kinetic energy,EK5*rv•v/2dA, to the total thermal energy,
ET5*rTdA, wherev and T are defined in~5b! and ~5c!.
The ratioEK/ET is also effectively a squared Mach number.

These two diagrams give one a rough idea of how the
momentum and mass organization depends onr and we now
discuss the different regimes in turn.

A. The kinetic state: 0.98<r<1.0

The first region 0.98<r<1 is characterized by low values
of both nrms andEK/ET , indicating that the density and par-
ticle velocities are not well organized. A ‘‘streakline’’ visu-
alization of the simulation withr50.98 ~Fig. 5! confirms
that there are no obvious mass or momentum correlations.
This is not surprising because this part of parameter space
contains the ideal gas atr51, whose equilibrium is this ‘‘ki-
netic’’ state. The kinetic state also exists forr

slightly less than 1, with the particles remaining evenly dis-
tributed with uncorrelated velocities, but the average velocity
dropping slowly as energy is dissipated by the slightly in-
elastic collisions. The stability of this gaseous state when
r,1 requires that the domain be small so that the unstable
long wave disturbances are excluded—see Fig. 1 and the
surrounding discussion.

In the kinetic state the granular kinetic theories make ac-
curate predictions. The two-dimensional theory of Jenkins
and Richman@16,17# can be used to calculate the loss of
granular thermal energy through collisions. Equations de-
scribing the kinetic state can be found by assuming thatv50
and that the densityr, and the temperature,T, are constant in
space. Then the temperature equation reduces to

]T

]t
52gT52

8

Ap
~12r !

n

s* ~n!d
T3/2, ~6!

where we have used the notation of Ref.@18#: d is the par-
ticle diameter,s

*
(n)[(12n)2/(127n/16), andT andt are

the dimensional temperature and time, respectively. The so-
lution of Eq. ~6! is

T5T0F11
4

Ap
~12r !

nT0
1/2

s* ~n!d
tG22

, ~7!

whereT0 is the temperature att50. Whent is large,T}t22.
Equation ~7! is compared with simulations in Fig. 6. The
theoretical prediction has a maximum error of 1.5% in the
r50.99 simulation. Simulations atr50.98~not shown! have
a much larger error~15%!. However, the temperature drops
several orders of magnitude during these simulations, so the
kinetic theory still provides an impressive prediction. The
r50.97 simulation deviates from thet22 prediction. This
simulation is in the ‘‘shearing state.’’

FIG. 5. Particle streaklines in the kinetic state. Here,r50.98,
N51024, andn50.25. C/N5600 collisions have occurred since
the simulation began. The dot marks the initial position of each
particle, and the line tracks the particle position for a small amount
of time. Even thoughEK/ET50.98, which is much greater than the
average valueEK/ET50.016 forr51.0, we classify this simulation
as ‘‘kinetic,’’ because there is no sign of the large scale velocity
organization which is visible in Fig. 7.

FIG. 6. The ‘‘granular temperature’’ vs time for simulations at
r50.99 andr50.97 ~all with N51024,n050.25!. The circles and
squares show results from simulations, and the continuous curves
are predictions from the kinetic theory in Eq.~7!. The temperature
is nondimensionalized withT0 , the temperature att50, and the
time with d/T 0

1/2, the average time for a particle to travel its diam-
eter whenT5T0 .
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B. The shearing state: 0.83<r<0.97

In the second region, 0.83<r<0.97, nrms in Fig. 3 in-
creases smoothly asr decreases.EK/ET in Fig. 4 increases to
the plateau value of about 2.5. These simulations are in the
‘‘shearing’’ state described by Goldhirsch and Zanetti@5#.
As shown in Fig. 7, the particles are divided into two bands
which move in opposite directions. This global motion con-
tains a large fraction of the total kinetic energy and this leads
to high values ofEK/ET in Fig. 4. Figure 7 is not typical of
the shearing state becauser50.97 is just beneath the
shearing–kinetic boundary. For values ofr well away from
the regime boundaries the concentration of momentum into
the large-scale shear flow is much greater, and also the mass
is clearly concentrated into the centers of the two counter-
flowing streams@5,6#.

C. The clustering state: 0.59<r<0.82

Around r50.82, the data in Figs. 3 and 4 split into two
populations. In Fig. 8, we plotEK/ET vs nrms for simulations
in Figs. 3 and 4 with 0.55<r<0.82. This regression reveals
that there are two distinct populations: one with
3,EK/ET,7 and 0.025,nrms,0.04, and another population
with 1,EK/ET,3 and 0.04,nrms,0.065. A closer inspec-
tion of these two groups shows that the highEK/ET points
are in the shearing state described above in Sec. III B but the
second group, with the smaller ratioEK/ET , is in a ‘‘clus-
tering’’ state. In the clustered state the particles are gathered
into bunches which collide, breakup, and then reform. This
clustering has been seen previously in a simulation with
n50.05, r50.6, andN540,000 by Goldhirsch, Tan, and
Zanetti @6#.

Figure 8 shows that the clustered state is an ‘‘extended
transient.’’ The1’s, which indicate the quantities averaged

betweenC/N520 andC/N5100, all lie near the clustered
state, whereas the3’s, which indicate the values averaged
betweenC/N5700 andC/N5800, all lie in the shearing
state. All our clustering simulations eventually either made a
transition to the shearing state or collapsed. We have never
seen a simulation in the shearing state return to the clustering
state.

Figure 9 shows a time series ofEK/ET , nrms and a mea-
sure of the velocity anisotropy for the simulation with
r50.73. The transition from the clustering state to the shear-
ing state atC/N'400 is obvious in all three of these quan-
tities. Figure 10 shows two particle ‘‘streakline’’ snapshots
for this particular simulation. In Fig. 10~a!, C/N5100 and
the system is in the clustering state. In Fig. 10~b!, C/N5800
and the organized, large scale flow which is characteristic of
the shearing state is evident.

We summarize these results withN51024 andn50.25
by saying that simulations with 0.59,r<0.82 follow a dif-
ferent evolutionary route than those with 0.83<r<0.97.
When 0.59<r<0.82, clusters form initially, but subse-
quently the system either collapses or evolves into the shear-
ing state, and then remains there. When 0.83<r<0.97 the
system evolves directly into the shearing state without a clus-
tering sojourn.

D. Inelastic collapse

Below a certain value ofr , the evolution of the simula-
tions is stopped by an inelastic collapse@9#. Whenr is close
to 0, only a few particles are required for collapse, and col-
lapse occurs quickly when there are many particles in the
domain. For example, in Fig. 11, we show the final state of a
N51024, n50.25, r50.05 simulation. The simulation has
stopped after only 31 collisions, and the particles involved in
these collisions are shaded black. The majority of particles
have not suffered a single collision, and retain their initial
kinetic energy. All black particles in Fig. 14 appear in pairs,

FIG. 7. Particle streaklines for the shearing state. Here,r50.97,
N51024, andn50.25. C/N5400 collisions have occurred since
the simulation began. The dot marks the initial position of each
particle, and the line tracks the particle position for a small amount
of time. The momentum is organized into the gravest shear mode.

FIG. 8. The correlation betweennrms andEK/ET for the simu-
lations in Figs. 3 and 4 with 0.55<r<0.82. This regression shows
two populations. The crosses indicate the average of all simulations
betweenC/N520 andC/N5100; these points arenot shown in
Figs. 3 and 4. The3’s mark the averages betweenC/N5700 and
C/N5800. We conclude that the simulations begin in the highnrms
moderateEK/ET population~the clustering state!, and finish in the
moderatenrms, highEK/ET state~shearing state!.
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except for the line of three particles in the lower right corner.
These three are the particles causing the collapse and they
are responsible for 14 of the 31 collisions that have occurred
in this simulation.~The three particles do not have to be
perfectly aligned. Atr50.05, numerical simulations show
that if the velocitiesare perfectly aligned, and the particle
surfaces are initially separated by a particle diameter, col-
lapse will occur if either of the two particles that collide first
deviate no more than about 0.03 of a particle diameter from
a straight line. On the other hand, the third particle can de-
viate by as much as a 1/8 of a particle diameter. AtN51024,
n050.25, and r50.05, these arrangements are common
enough in the initial condition to always halt the simulation
before every particle has had a chance to participate in a
collision.!

The linear arrangement of the three disks in Fig. 11 indi-
cates that an inelastic collapse is a one-dimensional phenom-
enon. In Sec. IV we argue that once a sufficient number of
particles~given by the one-dimensional theory! are lined up,
then collapse occurs just as it does in one dimension. In
support of this conclusion we show in Fig. 12 a selection of
simulations all withN51024 andn50.25 that were stopped
by collapse. The disks that were involved in the most recent
200 collisions are shaded black. The shading reveals the
roughly linear structures that form near the time of collapse.

IV. REGIME BOUNDARIES

In this section, we will compare the predictions of kinetic
theories to our simulations. One issue here is how well these
theories predict the boundary between the kinetic and shear-
ing states. We express these boundaries as critical values ofr
where the transition occurs for fixed values ofN andn. For
example, withN51024 andn50.25 ~Figs. 3 and 4!, the
boundary between the shearing and kinetic states is

FIG. 9. Time series for a simulation withN51024,n50.25, and
r50.73. Top panel: The momentum organizationEK/ET . Middle
panel: The density organizationnrms. Bottom panel: The velocity
anisotropy:((u i

22v i
2)/(u i

21v i
2) where (ui ,v i) is the velocity of

particle i . In all three panels the transition from the clustered to the
shearing state atC/N'400 is clear.

FIG. 10. ~a! Particle streaklines for the clustering state. Here,
r50.73,N51024, andn50.25.C/N5100 collisions have occurred
since the simulation began. The dot marks the initial position of
each particle, and the line tracks the particle position for a small
amount of time.~b! The same simulation as~a!, but at a later time
C/N5800. The system is now in the shearing state.
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r crit
SK~1024,0.25!'0.97 and the critical value for collapse is
r crit
coll~1024,0.25!'0.62.
One of our main conclusions is that the strong depen-

dence of these critical values onN andn can be expressed in
terms of a single parameter viz., the ‘‘optical depth’’l. This
length is defined by

l[nL5S d2DANpn, ~8!

whereL is the domain size in Eq.~1!. The optical depth has
a simple physical meaning. If one imagines a ray of light
passing directly across the simulation, from one boundary to
the other, then the ray travels a distanceL. Now, the fraction
of the area covered by disks isn, so nL is the distance the
ray travelsinsideparticles, hence the term ‘‘optical depth.’’
Alternatively, if all the particles were compressed against
one boundary, they would form a layer approximately
l5nL thick.

The dependence of bothr crit
SK andr crit

coll on the combination
of N andn in l hints that the processes which characterize
the different regimes are essentially one dimensional because
the optical depth gives the number of particles in a one-
dimensional slice through the domain. The one dimensional-
ity of the regime-changing mechanisms will be emphasized
in the discussion below.

A. Determination of the critical coefficient
of restitution for collapse

Precisely determining the threshold valuer crit
coll(N,n) for

which collapse occurs involves two ambiguities. First, the
boundary moves as the number of collisions in the simula-
tion increase. For example, forN51024 andn50.25, the
collapse threshold is estimated to ber50.62 if the simula-

tions are run untilC/N51500, butr50.59 if the simulations
are run only toC/N5400. For larger values ofN, or for
larger solid fractions~e.g.,n50.8!, the typical change isDr
50.05. It is difficult to run all simulations to the same value
of C/N, because simulations with small numbers of particles
evolve much more quickly than large simulations. Therefore
we adopted the arbitrary, but objective, procedure of running
simulations until either collapse or until the total kinetic en-
ergy was reduced to 10215 of the initial energy.

The second ambiguity is that the transition to collapse is
not sharp, or at least with finite computer resources one can
never compute long enough to be absolutely sure that a
simulation will not collapse. In fact, there are large fluctua-
tions whenr is close tor crit

coll(N,n). Near this transition some
simulations stop quickly because of collapse while others
with identical values of (N,n,r ) run for a long time. To
locate the transition in a consistent and meaningful way, we
chose a set of values forr straddling the collapse threshold,
and performed ten simulations at each value ofr . Then we
estimated the value ofr where half the simulations col-
lapsed. If two neighboring values ofr collapsed with prob-
abilities straddling 0.5, we linearly interpolated between
these two points. If the probability of collapse was estimated
to be 0.5 at more than one point,~this happened occasionally
when there were local maxima or minima!, we took the av-
erage. We carried out this procedure at many points in the
(N,n) parameter plane. Typically, the smallest value ofr
that never collapsed was aboutDr'0.06 greater than the
largest value ofr which always collapsed. Thus the uncer-
tainty in our estimate ofr crit

coll(N,n) is Dr560.03.
The results of this survey are summarized in Fig. 13. For

a fixedn, increasingN increasesr crit
coll(N,n), but each value

of n has its own curve. But if we plotr crit
coll(N,n) againstl/d

as defined in Eq.~8!, instead ofN, then the data condense
considerably—see Fig. 14.

It is interesting to compare the results of ourtwo-
dimensionalsimulations in Fig. 14 to the analytic estimates
of r crit

coll of which have been obtained in theone-dimensional
case. Bernu and Mazighi@7# using an ‘‘independent collision
wave model’’ predict that

r ICW~N!5tan2Fp4 S 12
2

ND G ~9!

is the critical value ofr for whichN particles can collapse in
one dimension.@Note that to obtain Eq.~9! we have taken
Eq. ~13! of Bernu and Mazighi and replaced theirn by N/2.
This is because Bernu and Mazighi are consideringn par-
ticles colliding with a wall which is equivalent to a collision
involving N52n particles in the middle of the medium.#

The second analytic estimate based on one-dimensional
considerations is the ‘‘cushion model’’~CM! of McNamara
and Young@2#. This model expresses the number of particles
required for collapse as a function ofr , rather than the re-
verse. The result is

NCM~r !5
ln@~12r !/4#

ln@~11r !/2#
. ~10!

FIG. 11. A simulation atN51024,n050.25, andr50.05 which
stops after just 31 collisions due to inelastic collapse. All particles
involved in any collision are colored black. The line of the three
particles in the lower right hand corner is the collapsing triad. These
three particles account for 14 of the 31 collisions.
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After allowing for the factor of 2 which arises because we
are considering conditions in the middle of a granular me-
dium the expression in Eq.~10! is equivalent to Eq.~7! in
McNamara and Young@2#.

The two curves in Fig. 14 are obtained by replacingN in
Eqs. ~9! and ~10! by l/d5ApNn/2 and plotting the results
in the (l,r ) plane. The proximity of the data points to these
curves supports the suggestion from Figs. 11 and 12 that the
collapse in two dimensions is essentially a one-dimensional
process.

Although considering the position of the clustered-
collapsed boundary as a function of the optical depth alone
condenses the data, there is still a systematic variation in Fig.
14. At high optical depths, the curves forn50.25 andn50.5

are distinctly separated, although both parallel the one-
dimensional collapse thresholds. At low optical depths, the
data from different values ofn converge well, but diverge
from the one-dimensional collapse threshold.

B. Kinetic-shearing boundary

In Sec. III B, we showed that whenN51024 andn50.25,
the kinetic state is unstable to the lowest shear mode if
r<0.97. This instability has been analyzed by two theoreti-
cal calculations. Goldhirsch, Tan, and Zanetti@5,6# explained
the appearance of the shearing mode in their simulations by
examining the linear stability of the dilute~n!1!, homoge-
neous, cooling granular medium. McNamara@19# analyzed

FIG. 12. This sequence of figures shows the final state of four simulations withN51024,n050.25, and the various values ofr indicated
in the bottom right hand corner of the figure. In all four cases the simulation was stopped by the collapse criterion:C/N is the total number
of collisions per particle at the time the simulation is stopped. The particles involved in the last two hundred collisions are shaded black: the
linear arrangements characteristic of collapse are evident.
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the same problem with no restriction onn. Both linear sta-
bility calculations relied on the granular kinetic theories of
Jenkins and Richman@16,17,19#.

The instability of the shearing modes is caused by a com-
petition between the dissipation of thermal energy by the
inelastic collisions and the rate at which viscosity transfers
macroscopic kinetic energy to thermal energy. If viscosity
damps shear waves more rapidly than the random thermal
motions are dissipated in collisions, the system remains in
the kinetic state. For instance, if one deliberately seeds the
initial condition with a short wavelength shear wave then
viscosity will quickly transfer the macroscopic kinetic en-
ergy of this short wave into thermal energy so that the sys-
tem returns to the kinetic state.

But if the transfer of macroscopic kinetic energy from
shear waves to thermal motion is less rapid than the inelastic
dissipation of thermal energy then the kinetic energy in the
shear waves ultimately dominates the flow. Goldhirsch and
Zanetti@5# showed that this is what happens when the system
enters the shearing state. For instance, consider the transition
betweenr50.98 ~Fig. 5! and r50.97 ~Fig. 7!. These two

simulations are distinguished by their organization of mo-
mentum~EK/ET50.098 in Fig. 5 vsEK/ET50.484 in Fig. 7,
a factor of almost 5!, rather than their organization of mass
~nrms50.0064 in Fig. 5 vsnrms50.0081 in Fig. 7!. We note
that a similar transition has been observed in a related com-
putational system@20#.

Now, givenr andn, it is always possible to find a shear
wave which is unstable in the sense described above, pro-
vided that the domain is large enough. The thermal energy
lost by the collisions is independent of wavelength, but vis-
cous damping of the shear modes decreases to zero as the
wavelength becomes infinite. However the length of the
shear waves that can exist in the simulation is limited by the
finite size of the domain. In Fig. 7 (r50.97), the flow is
dominated by the longest wavelength shear mode that can fit
in the simulation. In Fig. 5 (r50.98), the shortest unstable
wave islonger than the periodic domain, and so all possible
shear waves are damped more rapidly than the medium
cools. If the number of particles in that simulation were
doubled withn fixed at 0.25, then longer shear waves could
fit in the domain, including one which is unstable.

We now summarize kinetic theory’s quantitative predic-
tion for the onset of the shearing instability and compare this
prediction to our simulations. We use the results of Ref.@19#
because they are not limited to the dilute case. Equation~21!
in Ref. @19# gives the high wave number cutoff for the un-
stable shear modes as

kcd

n
5~12r !1/2S 4

m̃0~n!Ap
D 1/2, ~11!

wherekc is the cutoff wave number of the instability~e.g.,
see Fig. 1!, d is the diameter of the particles, andm̃0(n)
[n2Ap1(Ap/8)@n1s* (n)#

2 is a weak function ofn. The
quantity s

*
(n)[(12n)2/(127n/16) has appeared previ-

ously in Eq.~6!.
We now use Eq.~11! to estimate the critical domain size

by equating the wavelength of the shortest unstable shear
mode 2p/kc to L in Eq. ~1!. The resulting condition can be
rearranged as

~12r crit
SK!21/25

1

2p S 4

m̃0~n!Ap
D 1/2~l/d!, ~12!

wherel is the optical depth defined in Eq.~8! andr crit
SK(n,N)

is the critical value of the coefficient of restitution for the
onset of the shearing instability if one operates withn andN
fixed.

Plotting ~12r crit
SK!21/2 againstl/d at the kinetic-shearing

regime boundary for a fixed value ofn should yield a straight
line passing through the origin with a slope given by Eq.
~12!. The slope of the line is a mild function ofn; therefore,
results from several differentn should fall on separate,
neighboring lines.

The critical value of the coefficient of restitution, i.e.,
r crit
SK , was estimated from graphs like the one shown in Fig.
15. Many simulations withN51024, n50.25 were run at
closely spaced values ofr near the kinetic-shearing bound-
ary. The final energy plotted in Fig. 15 is a sensitive measure
of the energy dissipation, because every simulation runs for

FIG. 13. The criticalr for the inelastic collapse in the (r ,N)
plane for various values ofn. Note that points for different values of
n fall on separate curves.

FIG. 14. The same data as Fig. 13, except the optical depth
l[nL is used as the abscissa. The separate lines from Fig. 13 have
condensed.
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the same number of collisions:C/N5800. In the kinetic re-
gime r.0.976 the final energy depends strongly onr be-
cause the majority of the energy is thermal energy which is
dissipated directly in collisions at a rate depending strongly
on r . In the shearing state,r,0.976, the majority of the
energy resides in the longest shear wave. In order for this
energy to be dissipated, it first must be converted into ther-
mal energy by viscosity. Thus, the rate of dissipation is con-
trolled by the viscosity, which is independent ofr , so the
final energy does not depend strongly onr .

Estimates of the kinetic-shearing boundary as a function
of optical depth are shown in Fig. 16. For comparison with
Eq. ~12! we use (12r )21/2 as the ordinate in Fig. 16. With
the exception ofn50.8, the points fall on straight lines pass-
ing through the origin, consistent with Eq.~12!. In Fig.

17, we plot the slopes of the lines in Fig. 16~open circles!
against the theoretically predicted values from Eq.~12!. In
addition, two extra points, atn50.6 andn50.7 are added.
The points withn<0.6 parallel the theoretical curve, but de-
viate from it by a tantalizingly constant amount. We have no
explanation for this offset. Forn50.7 andn50.8 the points
from our simulations depart strongly from the theoretical
curve.

The failure of the theoretical prediction Eq.~12! for the
dense simulations atn50.7 andn50.8 in Fig. 17 is probably
related to the transition described by Jenkins and Shahinpoor
@21#. This work predicted that a gas of hard disks ‘‘freezes’’
when the solid fraction increases above aboutn50.53. The
particles are packed too densely for them to change positions
easily, and each particle is trapped in a ‘‘cage’’ of its neigh-
bors. A whole assembly of densely packed particles can
move as a unit, but if it any region is to shear, the density
must be locally lowered there. Thus in the densest simula-
tions in Fig. 17, a shear wave, which is essentially a parallel
flow, is inhibited. Instead we find that the system finds an-
other coherent motion where two counter-rotating, quasihex-
agonal eddies share the domain~see Fig. 18!. We have not
attempted to quantify this hexagonal state, though it is
clearly distinct from the kinetic-sheared dichotomy described
earlier.

V. DISCUSSION AND CONCLUSION

In this paper we have discussed the simplest example of a
granular medium in the kinetic regime. Earlier works have
demonstrated that this cooling inelastic gas is unstable to
inhomogeneous fluctuations. Here our main focus has been
to describe the various evolutionary paths which are fol-
lowed once these fluctuations grow to finite amplitude and to
delineate the regime boundaries in the three-dimensional pa-
rameter space (N,r ,n).

Provided that the medium is not too dense~i.e., n<0.7!
we believe that the major distinction is between simulations
which evolve into the shearing state described by Goldhirsch
and Zanetti@5# and those which collapse, as described by

FIG. 15. Energy atC/N5800, normalized by the initial energy
E(t50), for simulations at finely spaced values ofr near the
kinetic-shearing boundary. The vertical dotted line marks the
boundary between shearing and kinetic regimes: this critical value
is denoted byr crit

SK . In the kinetic regime, the final energy depends
strongly onr , but is nearly independent ofr in the shearing regime.
Plots like these were constructed for many values ofN andn, yield-
ing the data in Figs. 16 and 17.

FIG. 16. This figure shows~12r crit
SK!21/2 plotted against the op-

tical depthl/d. The different symbols distinguish different values
of n. Notice that the points belonging to a single value ofn fall on
a straight line.

FIG. 17. The slopes of the lines in Fig. 16 for the four values of
the solid fraction and two additional values~open circles!. The solid
line is the theoretical prediction of Eq.~10!. All slopes are given in
units of 1/d, whered is the particle diameter.
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McNamara and Young@8#. We have also described a clus-
tering state which is observed as a long-lived transient: some
simulations in the clustering state eventually evolve into the
shearing state, while others collapse. In simulations of
densely packed disks~i.e.,n>0.7! we saw a third possibility,
namely, the quasihexagonal eddying state in Fig. 18. We
have not attempted a detailed investigation of this tertium
quid.

Our computational study has made contact with theory at
two points. First, as shown in Fig. 14, the critical coeffi-

cient of restitution for an inelastic collapse is approximately
predicted by the theories of the one-dimensional inelastic
collapse constructed by Bernu and Mazighi@7# and
McNamara and Young@2#. In retrospect, this agreement is
not too surprising because the collapse event, once it begins,
is almost one dimensional and is localized in space. Thus at
the time of singularity, both the two-dimensional dynamics
of the medium, and the total number of particles in the me-
dium, are irrelevant. But it is surprising that the number of
particles in these ‘‘collapse strings’’ is roughly equal to the
number of particles in an optical depth, i.e., the number is
roughly equal tol/d;ANn. Since the collapse strings are
formed when a group of particles are rattling around in a
cluster, the success of the ‘‘optical depth scaling’’ shows that
the cluster formation process detects the length of the do-
main. To amplify this point: if all the particles were simply
swept together into a roughly circular cluster in the middle of
the domain then collapse would depend only uponN and not
on n. But instead we find that collapse depends on the com-
binationANn—this is the content of Figs. 13 and 14.

The second point of contact between our computational
study and theory is the success of Eq.~12! when n<0.7 in
predicting the critical value of the coefficient of restitution at
which the shear mode first becomes unstable asr is de-
creased from the elastic limitr51. This comparison between
simulation and theory is contained in Figs. 16 and 17.
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